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1 Introduction

The early detection of the malfunctions and faults as well as their compensation is crucial both

for maintenance and for mission reliability of unmanned underwater vehicles (UUVs). Among

the di�erent fault detection methods using analytical redundancy, the �rst distinction rises

between model-free and model-based approaches [1, 2]. Model-free methods are well-suited for

large-scale systems, where the development of a model is too expensive. The lumped parameter

model of an underwater vehicle can be easily described by a small set of well-known equations

with highly uncertain parameters [3]. This uncertainty suggests the introduction of robustness

requirements in the model-based residual generation for UUVs.

Robustness can be addressed in many di�erent ways: for instance, the reader can refer to [4]

for the parity equations and to [5] for the observer-based methods. According to the same view,

the so-called unknown input observer (UIO) has been proposed (see [6]). These approaches

share the common idea of decoupling residuals and noises by eliminating (or at least reducing

in some optimal sense) the in
uence of the disturbances on the residuals. Another way of facing

the problem consists in applying the H1 �lter design to the residual generator [7, 8].

All the methods described up to this point refer to linear models, while the general framework

for underwater vehicles presents nonlinearities due to the vehicle dynamics and to the features of

the drag occurring in the water. The extension of the residual generation methods to nonlinear

systems has been the subject of many studies and an account of all the results can be found

in [9]. Fault detection based on parameter estimation may be applied to nonlinear systems

when the dynamic equations are linear in parameters, but the uncertainty of common UUV

models introduces di�culties. Unknown input observers for nonlinear systems require a complex

state-space coordinate transformation, often di�cult to be computed (see the references in [9]).

Research about the extension of parity equations to nonlinear systems is only just beginning

(the only paper known to the authors is [10]).

In this paper, sliding-mode observers [11, 12] are proposed for the purpose of residual gen-

eration for UUV applications. In Section 2 the problem of robust observation for dynamical

systems with \Lipschitz" nonlinearities is addressed by means of sliding-mode observers. A ro-

bust observation scheme for the detection of actuator faults in the Roby 2 UUV is presented in

1



Section 3. Experimentally obtained results with a comparison between sliding-mode observer

and EKF are shown in Section 4.

2 Robust observer design

Consider a quite general class of nonlinear systems with linear channel, which enables one to

describe the dynamics of an underwater vehicle in many practical conditions:

�
x = Ax+ f (x) +B u

y = C x
(1)

where x(t) 2 X � R
n is the state vector and y(t) 2 Y � R

m is the measurement vector. The

channel is linear but in general not all the state variables are measurable. The presence of the

nonlinear function f in (1) prevents from using the classical linear theory for observer design;

moreover, the parameters of the matrix A and of the function f are a�ected by uncertainties.

This is particularly truthful for underwater vehicles since the marine environment introduces

many problems of modelling and the available sensors are imprecise. The uncertainties in the

system model suggest the utilization of sliding mode observers, as tested for many applications

[13, 14, 15].

Figure 1: scheme of the sliding-mode nonlinear observer.

A sliding-mode method for the design of observers for nonlinear systems is proposed in [16],

where a complete theoretical investigation is provided in the cases of stochastic and deterministic

models and by supposing correlated noises acting on the system. The structure of the sliding-

mode observer is the following:

_̂x = A x̂+ f (x̂) +B u+ L (y �Cx) + S ( x̂; y) (2)

where

S ( x̂; y) =

8>>>>><
>>>>>:

P�1CT C e

kC ek
; kC ek > "

P�1CT C e

"
; kC ek � "

(3)

where e is the observation error, i.e., e(t)
4
= x(t)� x̂(t) , and " is the amplitude of the boundary

layer [12]. The symmetric positive de�nite matrix P is the solution of a Riccati equation, which

will be speci�ed later on. In [17], a link has been investigated between the approach by [16] and

the so-called \Lipschitz" observer proposed in [18]
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Theorem 1. Given the system (1), if there exists a gain matrix L such that the Riccati

equation

(A� LC)T P + P (A� LC) + �f P P + I = �Q (4)

has a de�nite positive matrix P as solution (Q is a positive de�nite matrix and �f is the

Lipschitz constant of f , i.e., kf(x1)� f(x2)k � �f kx1 � x
2k , 8x1; x2 2 X ), then the sliding-

mode observer (2) has an asymptotic error covergent to zero.

The demonstration of Theorem 1 is given in [17] and it is reported in the Appendix. Theorem

1 enables one to design a sliding-mode observer for nonlinear systems as that depicted in Fig. 1.

The robust observer design enables one to generate residuals robust with respect to uncertainties

in the model.

3 Model-based fault detection by robust observers

Many methods can be found in literature to address model{based fault diagnosis [2], however

here we refer to a speci�c problem in underwater robotics [19]. Fig. 2 helps to explain the

problem of actuator faults for a ROV as Roby 2 moving on a plane by means of two horizontal

thrusters. When one of the two thruster fails, the dynamic model of the vehicle changes, as

discussed in [19].

Figure 2: picture of Roby 2 and a sketch of the vehicle operating on a horizontal plane.

To detect such kind of faults a model-based approach seems more suitable: three models are

considered, one for the system without fault, one for the system with left actuator fault and one

in case of right thruster fault.

An observer-based residual generator is a �lter able to produce over-sensitive variables (i.e.,

the residuals) as innovation of the recursive equation of �lter itself. Such a �lter generates the

residual vector r(t)
4
= y(t)�C x̂(t) according to the model of the fault used in the design of the

�lter itself. Thus, three models have been considered for the no-fault case and for the left and

right actuators faults, respectively (see Fig. 3). Both compass and gyro measurements have been

considered, while only compass measurements have been used in [19]. However, the available

gyro is very noisy so that a robust design of the residual generator has been accomplished.

Generally speaking for a model-based approach, a key-point is the choice of the model used

to design each observer of the bank. The cost to estimate a complete model is generally high,

since the UUV must be kept under test in tank facilities. It is easier to get simpler model of

the vehicle dynamics by means of sea or swimming-pool tests, in order to obtain decoupled

3



Figure 3: model-based bank of residual generators for actuator fault diagnosis.

dynamic equations of the motion in the surge and heave direction and of the rotation dynamics

for heading and diving. In the following, only simpli�ed decoupled dynamics of steering for

UUVs will be considered to design robust residual generators for the scheme depicted in Fig.

3 and a comparison will be shown with a standard EKF, using the same kind of input/output

data.

4 Experimental results

A dynamic model of a metacentric stable UUV as Roby 2 requires three equations in u (surge

speed), v (sway speed), and r (yaw rate) to describe the motion on the plane. However, the

only available model is an approximate second order dynamic equation in r , i.e.,

Iz
�
r +kr

�
r +krjrj r jrj =Mz (5)

where Mz is the torque input and the parameters kr and krjrj have been experimentally

identi�ed [20]. The models of the vehicle when a right or a left actuator fault occurs are

reported in [19]. Both EKF and sliding-mode observers have been considered to generate the

residuals r1 , r2 , and r3 .

A right actuator fault has been arti�cially caused in swimming-pool and its e�ect are de-

scribed in Fig. 4.

Figure 4: sketch of the manoeuvring in case of right actuator fault.

Fig.s 5, 6, and 7 show the residuals r1 , r2 , and r3 obtained with EKF and sliding-mode

observers using the same experimental data. The fault occurs at t = 20s . As can be noticed,

the absolute value of the residuals are lower in the sliding-mode observers. Both the EKF and

the sliding mode do not match exactly the gyro residuals (see the r1 gyro residuals before

t = 20s ) but the sliding-mode residuals are generally more stable. Note also that the compass

residuals do not present changes at the steady state after the occurrence of the fault since the

closed-loop regulator compensates the fault, which causes a variation of the heading. In order

to reduce the e�ects of the noise, statistical testing are carried out on the sliding-window means

of the residuals, shown in Fig.s 8, 9, and 10 (the window size is equal to 3s ). The sliding-mode
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observer performs better since its residuals reacts fast at the occurring of the fault without the

overshooting of the EKF.
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Figure 5: plots of the r1 residuals for EKF and sliding-mode observer.
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Figure 6: plots of the r2 residuals for EKF and sliding-mode observer.
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Figure 7: plots of the r3 residuals for EKF and sliding-mode observer.
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Figure 8: means of the r1 residuals for EKF and sliding-mode observer.
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Figure 9: means of the r2 residuals for EKF and sliding-mode observer.
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Figure 10: means of the r3 residuals for EKF and sliding-mode observer.

Appendix

Let us show the result stated in Theorem 1. By using equations (1) and (2), it is possible to

compute the error dynamics:

�
e = (A� LC) e+ f (x)� f (x̂)� S ( x̂; y) (6)
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Consider the Lyapunov function V = eT P e , where P is a positive de�nite matrix and compute

it derivative

�

V= e
T

h
(A� LC)T P + P (A� LC)

i
e+ 2

h
f(x)� f(x̂)

i
T

P e� 2 eT P S(x̂; y) (7)

By a simple algebra, we can compute upper bounds on the last two terms of (7):

2
h
f(x)� f(x̂)

i
T

P (x� x̂) � 2�f kx� x̂k kP (x� x̂)k

� �2
f
(x� x̂)T P P (x� x̂) + (x� x̂)T (x� x̂) (8)

Using (3), we obtain

�

V= eT
h
(A� LC)T P + P (A� LC) + �

2

f
P P + I

i
e� 2 eT P S(x̂; y) (9)

Moreover, the variable structure term becomes

2 eT P S(x̂; y) =

8>>>>><
>>>>>:

2 eT P P�1 CT C e

kC ek
=

2 eT CT C e

kC ek
= 2 kC ek ; kC ek > "

2 eT P P�1 CT C e

"
=

2 kC ek2

"
; kC ek � "

(10)

Thus, two cases should be considered, i.e., kC ek > " and kC ek � " . Suppose kC ek > " , it is

easy to show by (4)

�

V = �eT Qe� 2 kC ek � ��min (Q) kek
2 � 2 " < 0 (11)

where �min (Q) is the minimum eigenvalue of Q . Now suppose kC ek � " , the derivative of

the Lyapunov function becomes

�

V = �eT Qe� 2
kC ek2

"
� ��min

 
Q+

CT C

"

!
kek2 < 0 ; for kek 6= 0 (12)

Thus, by means of (11) and (12), kek asymptotically converges to zero if the conditions of

Theorem 1 are ful�lled.
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